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Properties and Applications of HTS-Shielded
Dielectric Resonators: A State-of-the-Art Report

Norbert Klein, Andreas Scholen, Norbert Tellmann, Claudio Zuccaro, and Knut Wolf Urban

Abstract— High temperature superconductor (HTS) shielded
dielectric resonators (DR’s) have demonstrated to provide quality
factors () between 5 x 10° and several 10° at frequencies up
to 20 GHz and levels of dissipated rf pewer in the range of
Watts. As dielectric materials, high purity single crystals of
sapphire, LaAlO;, and rutile exhibit sufficiently low microwave
losses. There are two main areas of application which are consid-
ered to benefit from HTS-shielded DR’s, namely low-phase-noise
oscillators for radar systems and digital communication, and
high-power filters for satellite communication. Projections for
phase noise are —145 dBc/Hz at 1 kHz offset from the carrier
frequency, a value of —110 dBc¢/Hz at 1 kHz was measured
recently for an oscillator with a carrier frequency of 5.6 GHz.
Modeling of filters based on resonators with Qs in the 10°
range indicates their ability to reduce the rf power dissipation
apparent in the output multiplexers of communication satellite
payloads. Presently, schemes for resonator coupling and tuning
while maintaining high (s are under development.

I. INTRODUCTION

HE UTILIZATION of the low microwave surface resis-

tance R, of epitaxially grown high temperature super-
conductor (HTS) films is restricted to planar surfaces. Besides
planar circuits based on (micro)striplines, coplanar lines, or
lumped elements, HTS shielded dielectric resonators (DR’s)
benefit from the low R, values of HTS films. Basically, a
HTS shielded DR consists of a disk shaped DR with two HTS
endplates attached or arranged close to the endplates of the
disk (Fig. 1). For the majority of applications TEq,, modes
are considered. For these modes only a negligible amount of
losses arises from the cylinder wall, which is usually machined
from high purity copper. The modeling of the electromagnetic
(em) fields of the resonator in Fig. 1 can be performed using
semianalytical approaches based on a representation of the
em fields in terms of one [1], [2] or a finite number [3] of
TEo, mode(s) of a shielded dielectric rod waveguide. For the
rigorous analysis of HTS-shielded DR’s taking into account
coupling apertures or a possible anisotropy of the permittivity
of the dielectric disk numerical methods like e.g. the computer
code “MAFIA” [4], [5] were used successfully.

II. LOSSES IN SINGLE-CRYSTALLINE DIELECTRIC MATERIALS

Among the single-crystal materials with high permittivity
sapphire (e, = 9.4), MgO (e, = 9.7), LaAlO3 (e, = 23.4),
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Fig. 1. Schematic drawing of an HTS-shielded DR.

and rutile (¢, = 105) exhibit considerably low values of the
loss tangent tand [6], [7]. Sapphire was investigated from
9 to 150 GHz indicating a linear frequency dependence and
a T*~5 temperature dependence of tand from 70 to 150 K
with tan 6(77 K, 10 GHz) = 2 x 1077 [8], [9]. The observed
temperature dependence of tand was found to be in good
agreement with the theoretical model of Sparks, King and
Mills [10], which describes intrinsic losses caused by the
interaction of em waves with the phonon system. In addition to
the strongly temperature dependent intrinsic losses, the level
of the nearly temperature independent residual losses caused
by defects is of the order of 107°-10~% depending on the
quality of the crystals. The losses of MgO were found to be
in the 10~ range [6]. However, there is no advantage of
MgO-DR’s as sapphire has about the same €., lower losses
and provides an ultimate mechanical and chemical stability.
From the materials with higher ¢., LaAlOs; was found to
exhibit quite low losses. Fig. 2 shows the unloaded quality
factor (g versus temperature for an HTS-shielded DR with
different LaAlOj3 cylinders of 15.2 mm diameter and 7.6 mm
height (TEo;1-mode). Except in the temperature range close
to T,, Qg is dominated by the losses in the dielectric cylinder,
ie Qg ! is approximately equal to tan . According to Fig. 2
the highest Qo values of 2 x 10°% at 4 K were measured
with a Czochralski grown cylinder with its twin boundaries
uniformly oriented parallel to the cylinder endplate throughout
the entire cylinder (= single domain, circles), However, above
about 35 K ) decreases strongly leading to a crossover
with the Qo(T) data measured with the Verneuil grown
cylinder (squares) at 50 K. The Verneuil grown cylinder has
a typical domain size of a few millimeters. The data marked
by crosses and triangles were measured using cylinders with
less than five large domains grown by Czochralski (crosses)
and Verneuil (triangles), respectively. It is obvious from Fig. 2
that the loss tangent of LaAlQOs is strongly affected by the
twinning domains and by impurities. For the Czochralski
grown material the level of impurities is considered to be
smaller in comparison to the Verneuil material. This may be
the reason for the high @y values at low temperatures.
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Fig. 2. Unloaded quality factor versus temperature for a HTS-shielded DR
at 5.6 GHz measured with single domain Czochralski (circles), small domain
size Verneuil (squares), large domain size Czochralski (crosses) and Verneuil
(triangles) grown LaAlOj3 cylinders (from [25]).
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Fig. 3. Loss tangent tané of rutile measured with the 4 mm diameter
(f = T 3~7.8 GHz) and with the 6 mm diameter rutile cylinder (f = 4.9-5.2
GHz). The full lines represent theoretical calculations based on a model
described in [10].

For applications in the low GHz range rutile is of par-
ticular relevance due to its high permittivity of 85 at room
temperature and 110 at 4 K (for electric fields parallel to the
crystallographic a, b plane) [7]. Fig. 3 shows tan (T, at
two different frequencies, measured by a dielectric resonator
technique. Above the kink apparent in one data set tand
exhibits a frequency and temperature dependence according to
fT?%, which is in good agreement with the theoretical model
by Sparks, King and Mills (full lines in Fig. 3. calculated
according to [10] using phonon frequencies from the Aj
phonon branches, see phonon dispersion relations of rutile in

[L1]).

III. PROPERTIES OF HTS-SHIELDED DIELECTRIC RESONATORS

The highest quality factors were obtained with HTS-
shielded sapphire DR’s at C-band frequencies [12]. Fig. 4
shows the unloaded quality factor versus temperature for an
HTS shielded sapphire DR using to YBasCuz O~ films of one
inch in diameter at 11 GHz. Fig. 5 shows (Jy (triangles) and
resonance frequency (full line) versus temperature for a HTS
shielded rutile DR at about the same frequency. Due to the
high permittivity of rutile this resonator is extremely small
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Fig. 4. Unloaded quality factor versus temperature for an HTS-shielded
sapphire DR at 11 GHz.
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Fig. 5. Qo (triangles) and resonance frequency (full line) versus temperature
measured with an HTS-shielded rutile DR (from [7]).

in size, the diameter and height of the resonant volume is 8
mm and 2 mm, respectively [7]. From the linear frequency
dependence of the loss tangent and the f2 dependence of the
surface resistance of HTS films Qs of about 10° at 77 K are
expected at 1.8 GHz, which is an important frequency- for
mobile communication. At 1.8 GHz a YBCO shielded rutile
DR would require two YBCO films of only two inches in
diameter. One drawback of rutile is the strong temperature
dependence of the permittivity resulting in a temperature
coefficient of the resonance frequency of 500 ppnvK for the
HTS-shielded rutile DR at 60 K (Fig. 5).

However, the large negative temperature coefficient of e,
(i.e. the positive temperature coefficient of the resonance
frequency of a rutile DR) can be utilized to provide a passive
compensation of the negative temperature coefficient of the
resonance frequency due to thermal expansion and the temper-
ature dependence of the penetration depth in superconductors.
As an example, Fig. 6(a) shows a resonator geometry with a
thin rutile disk of thickness d arranged inside the shielding
cavity of a sapphire DR. The dashed line in Fig. 6(b) rep-
resents the measured temperature coefficient of the resonance
frequency of the resonator in Fig. 6(a) without the rutile disk at
T = 70K, which is due to thermal expansion and temperature
change of the penetration depth of the HTS-films covering
the top and bottom plate of the shielding cavity. The squares
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Fig. 6. (a) Passive compensation of the temperature coefficient of a shielded
sapphire DR by a thin rutile disk of thickness d. In (b), the dashed line
represents the temperature coefficient of the resonance frequency of the
resonator shown in (a) without the rutile disk at T = 70K. The squares represent
calculated values of the change of the resonance frequency with temperature
due to the temperature dependence of e, of rutile.

represent calculated values of the change of the resonance
frequency with temperature due to the temperature dependence
of ¢, from [7]. According to this calculation performed with
the computer code “MAFIA” [4], [5] compensation of the
temperature coefficient occurs at a thickness of the rutile disk
of 0.56 mm. The fraction of electric field energy stored in the
rutile disk is a few percent of the total energy stored in the
resonator, i.e. the loss contribution of the rutile disk becomes
negligible.

The maximum power level at which high Qs are maintained
is determined by the lower critical field H. of the film,
which is related to the critical current density j. by j. =
H. /A, with A being the penetration depth of the magnetic
field. Typically, at 4 K (77 K) the critical current density
is 5 x 107(5 x 10%) A/cm?, leading to critical magnetic
induction values of B.;(4 K) = 100 mT (A = 150 nm)
and B.;(77 K) = 16 mT (A = 260 nm). The circulating
power, i.e. the product of power dissipated in the resonator
Py and Qy, is proportional to the square of magnetic field.
The maximum circulating power can be calculated from the
maximum rf magnetic field on the surface of one of HT'S films:

B2 = a3 (PoQo)max- )

The field calibration factor ap was calculated using the
“MAFIA” code. ap depends on the resonator geometry and
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on the mode. As an example, for a DR at 10 GHz (TEg11-
mode) with diameter = 2x height the (PoQg)max values at
4 K (77 K) are 2.8 x 108 W (7 x 105 W) for sapphire
(ap = 6.06 x 1078 T/W/2). Therefore HTS shiclded DR’s
have the capability to handle levels of dissipated power in
the range of Watts (depending on ()g). According to the data
given in [12] and more recent data given in [14] the nonlinear
effects at lower power levels can be very small (depending on
the quality of the HTS film [14]), in contrast to most of the
HTS planar devices [13] (except those using modes without rf
currents parallel to edges, see [14]).

IV. OSCILLATORS

There is a strong demand for low-phase-noise oscillators
from several areas of applications. First, Doppler radar sys-
tems would gain sensitivity upon improving the oscillator
phase noise. Secondly, the bit error rate in high speed digital
communication systems could be decreased, especially in
high order Quadrature Amplitude Modulation (QAM) systems
where phase jitter or noise close to the carrier causes increased
uncertainty in the phase angle of the carrier prior to and during
IF processing [15]. Finally, there is a demand for low phase
noise standards, in particular at frequencies above 20 GHz. All
these applications are considered to be in the frequency range
from 5 to 40 GHz. At lower frequencies it is believed that
HTS oscillators can hardly compete against SAW oscillators.

Fig. 7 shows the measured phase noise of a 5.6GHz os-
cillator consisting of a HTS shielded LaAlOs DR used as a
feedback of a room temperature FET amplifier. At an offset
frequency of 1 kHz a phase noise as low as —110 dBc/Hz was
measured, values of —100 dBc/Hz were reported recently [16]
for an HTS shielded sapphire DR at about the same frequency.
Above an offset frequency of about 10 kIHz the phase noise is
below the noise floor of the phase noise measurement system
(dashed line). The full line represents a calculation according
to the Leeson formula [17]:

L(f):l()xlog[(1+_4g§f2)(%+ Gl;kT)]. o

Using fo = 5.6 GHz, P = +15 dBm (amplifier output
power), G = 20 dB (ampifier gain), F' = 1 dB (amplifier
noise figure), T = 293 K (amplifier operation temperature),
@ = 150000 (loaded quality factor) the data below 2 kHz
can be fitted well using a cutoff frequency f.(a/f. is equal
to the white noise, i.e. f. = aP/(GFKT))) of 3 MHz.
This is a typical value for FET amplifiers [18]. Using bipolar
transistors instead of FET’s with typical cutoff frequencies of
about 10 kHz [19] a reduction of phase noise by 20 dB, i.e. to
—130 dBc/Hz at 1 kHz is expected. According to (2) a further
reduction should also be achievable by higher quality factors.
However, at present a limitation of the oscillator performance
by possible 1/ f noise of the HTS resonator cannot be excluded
and therefore further investigations are necessary. A reduction
of phase noise to values much below the Leeson expectation
can also be achieved by using more advanced oscillator
circuits [15], [20]. Recently, phase noise values between
~130 dBc/Hz and —145 dBc/Hz at 1 kHz were demonstrated
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Fig. 7. Measured phase noise of a 5.6 GHz HTS oscillator. The
dashed line represents the noise floor of the phase noise measure-
ment system. The full line was calculated according to (2) using
fo =56 GHz, P = +15dBm. G = 20 dB. F' =1dB. T = 293 K,
; = 150000, and f. = 3 MHz.

using either a whispering-gallery-mode sapphire resonator at
T = 0°C [15, 21] or cryogenic temperatures [22] as well as
HTS shielded sapphire DR’s in low order TEgq modes [23], all
of these using PLL based feedback circuits. The disadvantage
of such oscillators is the enhanced complexity of the circuit,
which makes the realization of all-cryogenic hybrid oscillators
more difficult. Problems which are currently addressed are
the implementation of compact cryocoolers with emphasis on
temperature stability and low microphonics.

V. FILTERS

Presently, the most promising area of applications for filters
based on HTS shielded DR’s are output multiplexers in
communication satellites. Typically, power levels of 10-100
W are passed through filters of less than 1% bandwidth at 4-20
GHz. The insertion loss values of conventional waveguide
filters is in the order of a few tenths of a dB giving raise to
Watts of power loss in the output multiplexer. The reduction
of insertion loss by the use of filters based on resonators
with higher (Js is considered to decrease the required output
power of the travelling wave tube amplifiers. Weight reduction,
however, is more a concern of the input multiplexers where
HTS planar filters are considered to replace the waveguide
and conventional DR filters.

As an example, the calculated insertion loss of an 8 pole
Tchebyschev filter with 1% bandwidth is about 0.25 dB for
conventional resonators with Qgs of 20000 and 0.007 dB for
HTS-shielded DR’s with Qgs of 10% [24]. Assuming a total
power of 100 W to be passed through the superconducting
filter, the FPy(QQo of each resonator is about 20000 W, which
corresponds to 1f field amplitudes well below the critical values
(see Eq. 1). The total power dissipation in the filter would be
160 mW in comparison to 5.6 W for the normal conducting
version. However, possible losses in the input/output connec-
tors have to be minimized as well, i.e. coaxial coupling as
shown in Fig. 1 will not be allowed.
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To the best of our knowledge, filters consisting of resonators
of such high @) values have not been built yet. One problem is
connected with frequency tuning. Here schemes adapted from
conventional DR’s (e.g. tuning screws in the shielding cavity)
are considered to result in an untolerable () degradation. COM-
DEYV recently demonstrated a dual mode DR filter with an HTS
film acting as mirror plane inside the shielding cavity [26].
However, only Qs of 10* were achieved. In comparison to
waveguide filters with about the same resonator (), the benefit
is a reduction of mass and size of input multiplexers. One
possible way of tuning without @@ degradation would be a
variable gap between one of the HTS films and the dielectric
cylinder (Fig. 1). However, the mechanical layout of such a
tuning structure needs to be very insensitive against vibration.

VI. CONCLUSION

HTS shielded DR’s have the potential to provide quality
factors in the 10°-10° range at levels of Watts of dissipated rf
power. Such performance cannot be achieved by non cryogenic
resonators. Therefore HTS-shielded DR’s have a large poten-
tial to fulfill performance requirements of future microwave
radar and communication systems. In contrast to the HTS films
where significant improvements of the microwave properties
are not likely to be expected, the exploration and optimization
of dielectrics at cryogenic temperatures offers a new device
performance related field of material research. In order to make
practical use of HTS-shielded DR’s in microwave radar and
communication systems the engineering tasks associated with
resonator coupling, tuning and cooling by cryocoolers need to
be well defined in the nearest future by considering system
specifications.
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